@ -1,31 +1,6 @@
Vue . component ( 'line-chart' , {
extends : VueChartJs . Line ,
mixins : [ VueChartJs . mixins . reactiveProp ] ,
props : [ 'options' ] ,
// mixins: [VueChartJs.mixins.reactiveData],
// props: ['options','labels', 'datasets'],
// watch: {
// 'labels': function(new_val) {
// this.chartData = {
// 'labels': new_val,
// 'datasets': this.datasets};
// },
// 'datasets': {
// deep:true,
// handler: function(new_val) {
// this.chartData = {
// 'labels': this.labels,
// 'datasets': new_val};
// }
// }
// },
mounted ( ) {
this . renderChart ( this . chartData , this . options ) ;
} ,
} )
var palette = [ '#d2000d' , '#d30512' , '#d40a17' , '#d50f1c' , '#d61420' , '#d71a25' , '#d71f2a' , '#d8242f' , '#d92934' , '#da2e39' , '#db333d' , '#dc3842' , '#dd3d47' , '#de424c' , '#df4751' , '#e04d56' , '#e0525a' , '#e1575f' , '#e25c64' , '#e36169' , '#e4666e' , '#e56b73' , '#e67077' , '#e7757c' , '#e87a81' , '#e98086' , '#e9858b' , '#ea8a90' , '#eb8f95' , '#ec9499' , '#ed999e' , '#ee9ea3' , '#efa3a8' , '#f0a8ad' , '#f1adb2' , '#f2b3b6' , '#f2b8bb' , '#f3bdc0' , '#f4c2c5' , '#f5c7ca' , '#f6cccf' , '#f7d1d3' , '#f8d6d8' , '#f9dbdd' , '#fae0e2' , '#fbe6e7' , '#fbebec' , '#fcf0f0' , '#fdf5f5' , '#fefafa' , '#ffffff' , '#fafcfa' , '#f5f9f5' , '#f0f6f0' , '#ebf3ec' , '#e6f1e7' , '#e1eee2' , '#dcebdd' , '#d7e8d8' , '#d3e5d3' , '#cee2cf' , '#c9dfca' , '#c4dcc5' , '#bfd9c0' , '#bad6bb' , '#b5d4b6' , '#b0d1b2' , '#abcead' , '#a6cba8' , '#a1c8a3' , '#9cc59e' , '#97c299' , '#92bf95' , '#8dbc90' , '#88b98b' , '#84b786' , '#7fb481' , '#7ab17c' , '#75ae77' , '#70ab73' , '#6ba86e' , '#66a569' , '#61a264' , '#5c9f5f' , '#579c5a' , '#529a56' , '#4d9751' , '#48944c' , '#439147' , '#3e8e42' , '#398b3d' , '#348839' , '#308534' , '#2b822f' , '#267f2a' , '#217d25' , '#1c7a20' , '#17771c' , '#127417' , '#0d7112' , '#086e0d' ]
// ----------------------------------------------------------------------------
// -------------------------------- Plot --------------------------------------
// ----------------------------------------------------------------------------
Array . prototype . simpleSMA = function ( N ) {
return this . map (
@ -55,201 +30,66 @@ Array.prototype.max = function() {
} ) ;
} ;
app = new Vue ( {
el : '#app' ,
components : {
VueSlider : window [ 'vue-slider-component' ]
} ,
data : {
width : 0 ,
height : 0 ,
q _table : machine . q _table ,
maze : maze ,
state : {
x : 0 ,
y : 0
} ,
state _tween : new TimelineLite ( ) ,
score : machine . score ,
score _history : machine . score _history ,
labels : [ ] ,
learning _rate : machine . lr ,
discount _factor : machine . df ,
epsilon : machine . epsilon ,
slider _config : {
min : 0 ,
max : 1 ,
duration : 0 ,
interval : 0.01 ,
tooltip : 'none'
} ,
robot _image : null ,
energy _image : null ,
} ,
created ( ) {
// Resize handler
window . addEventListener ( 'resize' , this . handleResize )
this . handleResize ( ) ;
// State wrapper
var s = machine . state ;
var $this = this ;
this . state = this . s2p ( s ) ;
Object . defineProperty ( machine , 'state' , {
get : function ( ) {
return this . _state
} ,
set : function ( ne ) {
this . _state = ne ;
$this . handleState ( this . _state ) ;
}
} ) ;
machine . state = s ;
// Score wrapper
var s = machine . score ;
var $this = this ;
this . score = s ;
Object . defineProperty ( machine , 'score' , {
get : function ( ) {
return this . _score
} ,
set : function ( ne ) {
this . _score = ne ;
$this . score = ne
}
} ) ;
machine . score = s ;
// Score history wrapper
var s = machine . score _history ;
var $this = this ;
this . score _history = s ;
Object . defineProperty ( machine , 'score_history' , {
get : function ( ) {
return this . _score _history
Vue . component ( 'line-chart' , {
extends : VueChartJs . Line ,
mixins : [ VueChartJs . mixins . reactiveProp ] ,
props : [ 'options' ] ,
mounted ( ) {
this . renderChart ( this . chartData , this . options ) ;
} ,
set : function ( ne ) {
this . _score _history = ne ;
$this . score _history = ne
}
} ) ;
machine . score _history = s ;
} )
// ----------------------------------------------------------------------------
// --------------------------------- Map --------------------------------------
// ----------------------------------------------------------------------------
function set _images ( $this ) {
const robot _image = new window . Image ( ) ;
robot _image . src = "img/robot.png" ;
// robot_image.src = "https://konvajs.org/assets/yoda.jpg";
robot _image . onload = ( ) => {
// set image only when it is loaded
this . robot _image = robot _image ;
$this . robot _image = robot _image ;
} ;
const energy _image = new window . Image ( ) ;
energy _image . src = "img/station.png" ;
// energy_image.src = "https://konvajs.org/assets/yoda.jpg";
energy _image . onload = ( ) => {
// set image only when it is loaded
this . energy _image = energy _image ;
$this . energy _image = energy _image ;
} ;
} ,
destroyed ( ) {
window . removeEventListener ( 'resize' , this . handleResize )
} ,
computed : {
datacollection : function ( ) {
return {
labels : Array . from ( Array ( this . score _history . length ) . keys ( ) ) ,
datasets : [ {
label : 'Data One' ,
backgroundColor : 'rgb(0,0,0,0)' ,
data : this . score _history , //.simpleSMA(Math.round(50)),
fill : false ,
borderColor : 'rgb(255, 159, 64)' ,
pointRadius : 1 ,
} ,
// {
// label: 'Data One',
// backgroundColor: 'rgb(0,0,0,0)',
// data: this.score_history.max(),
// fill: false,
// borderColor: 'rgb(64, 159, 255)',
// pointRadius: 1,
// },
]
}
} ,
plot _options : function ( ) {
var $this = this ;
return {
responsive : true ,
maintainAspectRatio : false ,
scales : {
xAxes : [ {
// type: 'linear',
ticks : {
maxTicksLimit : 8 ,
maxRotation : 0 ,
}
} ]
} ,
legend : {
display : false
}
}
} ,
stage _config : function ( ) {
return {
width : this . width ,
height : this . height ,
}
} ,
mini _map _config : function ( ) {
}
var palette = [ '#d2000d' , '#d30512' , '#d40a17' , '#d50f1c' , '#d61420' , '#d71a25' , '#d71f2a' , '#d8242f' , '#d92934' , '#da2e39' , '#db333d' , '#dc3842' , '#dd3d47' , '#de424c' , '#df4751' , '#e04d56' , '#e0525a' , '#e1575f' , '#e25c64' , '#e36169' , '#e4666e' , '#e56b73' , '#e67077' , '#e7757c' , '#e87a81' , '#e98086' , '#e9858b' , '#ea8a90' , '#eb8f95' , '#ec9499' , '#ed999e' , '#ee9ea3' , '#efa3a8' , '#f0a8ad' , '#f1adb2' , '#f2b3b6' , '#f2b8bb' , '#f3bdc0' , '#f4c2c5' , '#f5c7ca' , '#f6cccf' , '#f7d1d3' , '#f8d6d8' , '#f9dbdd' , '#fae0e2' , '#fbe6e7' , '#fbebec' , '#fcf0f0' , '#fdf5f5' , '#fefafa' , '#ffffff' , '#fafcfa' , '#f5f9f5' , '#f0f6f0' , '#ebf3ec' , '#e6f1e7' , '#e1eee2' , '#dcebdd' , '#d7e8d8' , '#d3e5d3' , '#cee2cf' , '#c9dfca' , '#c4dcc5' , '#bfd9c0' , '#bad6bb' , '#b5d4b6' , '#b0d1b2' , '#abcead' , '#a6cba8' , '#a1c8a3' , '#9cc59e' , '#97c299' , '#92bf95' , '#8dbc90' , '#88b98b' , '#84b786' , '#7fb481' , '#7ab17c' , '#75ae77' , '#70ab73' , '#6ba86e' , '#66a569' , '#61a264' , '#5c9f5f' , '#579c5a' , '#529a56' , '#4d9751' , '#48944c' , '#439147' , '#3e8e42' , '#398b3d' , '#348839' , '#308534' , '#2b822f' , '#267f2a' , '#217d25' , '#1c7a20' , '#17771c' , '#127417' , '#0d7112' , '#086e0d' ]
Vue . component ( 'rl-map' , {
props : [ 'machine' , 'maze' , 'config' ] ,
data : function ( ) {
return {
x : this . width / 2 - ( this . base _size * ( this . maze . width ) / 2 ) ,
y : this . height / 2 - ( this . base _size * ( this . maze . height ) / 2 ) ,
scale : {
x : 1 ,
y : 1
}
robot _image : null ,
energy _image : null ,
}
} ,
local _layer : function ( ) {
return {
x : this . width / 2 ,
y : this . height / 2 ,
scale : {
x : 2 ,
y : 2
}
}
created ( ) {
set _images ( this ) ;
} ,
map _config : function ( ) {
computed : {
main _config : function ( ) {
return {
x : this . base _size * ( this . maze . width - this . state . x ) ,
y : this . base _size * ( this . maze . height - this . state . y ) ,
... this . config ,
offset : {
x : this . base _size * this . maze . width + this . base _size / 2 ,
y : this . base _size * this . maze . height + this . base _size / 2 ,
}
x : - ( this . config . width - this . base _size * this . maze . width ) / 2 ,
y : - ( this . config . height - this . base _size * this . maze . height ) / 2 ,
}
} ,
agent _config : function ( ) {
return {
sides : 5 ,
radius : this . base _size / 3 ,
fill : '#00D2FF' ,
stroke : 'black' ,
strokeWidth : this . strokeW ,
offset : {
x : - this . base _size / 2 ,
y : - this . base _size / 2
} ,
x : this . base _size * this . state . x ,
y : this . base _size * this . state . y ,
}
} ,
robot _config : function ( ) {
return {
height : this . base _size ,
width : this . base _size ,
x : this . base _size * this . state . x ,
y : this . base _size * this . state . y ,
x : this . base _size * this . machine . state . x ,
y : this . base _size * this . machine . state . y ,
image : this . robot _image ,
}
} ,
@ -265,7 +105,7 @@ app = new Vue({
}
} ,
base _size : function ( ) {
return Math . min ( this . stage _ config. height * 0.8 / this . maze . height , this . stage _ config. width * 0.5 / this . maze . width ) ;
return Math . min ( this . config . height / this . maze . height , this . config . width / this . maze . width ) ;
} ,
strokeW : function ( ) {
return this . base _size / 50 ;
@ -286,45 +126,8 @@ app = new Vue({
}
} ,
methods : {
s2p : function ( state ) {
return {
x : ( state % this . maze . width ) ,
y : Math . floor ( state / this . maze . width ) ,
}
} ,
p2s : function ( x , y ) {
return x + y * this . maze . width ;
} ,
handleResize : function ( ) {
this . width = window . innerWidth ;
this . height = window . innerHeight ;
} ,
handleState : function ( s ) {
if ( ! machine . running ) {
this . state _tween . to ( this . state , 0.2 , {
x : this . s2p ( s ) . x ,
y : this . s2p ( s ) . y
} ) ;
} else {
this . state = this . s2p ( s ) ;
}
// this.hidden_state = s;
} ,
get _grid _line _config : function ( idx , y = false ) {
var offset = this . strokeW / 2 ;
if ( y ) {
var points = [ - offset , Math . round ( idx * this . base _size ) , this . base _size * this . maze . width + offset , Math . round ( idx * this . base _size ) ] ;
} else {
var points = [ Math . round ( idx * this . base _size ) , - offset , Math . round ( idx * this . base _size ) , this . base _size * this . maze . height + offset ] ;
}
return {
points : points ,
stroke : '#ddd' ,
strokeWidth : this . strokeW ,
}
} ,
get _tile _type : function ( state ) {
var pos = this . s2p ( state ) ;
var pos = this . machine . s2p ( state ) ;
if ( pos . y > maze . height ) {
return null ;
} else if ( pos . x > maze . width ) {
@ -333,14 +136,8 @@ app = new Vue({
return maze . map [ pos . y ] [ pos . x ] ;
}
} ,
in _plus : function ( pos1 , pos2 ) {
if ( Math . abs ( pos1 . x - pos2 . x ) + Math . abs ( pos1 . y - pos2 . y ) < 2 ) {
return true ;
}
return false ;
} ,
get _field _config : function ( state ) {
var pos = this . s2p ( state ) ;
var pos = this . machine . s2p ( state ) ;
return {
x : this . base _size * pos . x + this . base _size / 2 ,
y : this . base _size * pos . y + this . base _size / 2 ,
@ -443,20 +240,20 @@ app = new Vue({
}
} ,
get _tile _config : function ( i , t _type , local = false ) {
var pos = this . s2p ( i ) ;
// var pos = this.s2p(i);
var over = { } ;
// not in plus
if ( local ) {
if ( ! this . in _plus ( this . s2p ( i ) , {
x : Math . round ( this . state . x ) ,
y : Math . round ( this . state . y )
if ( ! this . in _plus ( this . machine . s2p ( i ) , {
x : Math . round ( this . machine . state . x ) ,
y : Math . round ( this . machine . state . y )
} ) ) {
over = {
opacity : 0 ,
fill : "#eee"
} ;
} else if ( i != this . p2s ( Math . round ( this . state . x ) , Math . round ( this . state . y ) ) ) {
} else if ( i != this . p2s ( Math . round ( this . machine . state . x ) , Math . round ( this . machine . state . y ) ) ) {
over = {
opacity : 1 ,
fill : "#eee"
@ -510,25 +307,553 @@ app = new Vue({
... over ,
}
}
} ,
} ,
template :
` <v-layer ref="map_layer">
< v - group ref = "map_group" : config = "main_config" >
< v - group v - for = "(t_type, idx) in maze.map.flat()" : config = "get_field_config(idx)" >
< v - rect : config = "get_tile_config(idx, t_type)" > < / v - r e c t >
< v - image : config = "energy_config" v - if = "t_type==8" > < / v - i m a g e >
< / v - g r o u p >
< v - group v - for = "(action,idx) in machine.q_table" : config = "get_field_config(idx)" >
< v - shape v - for = "(value, key) in action" : config = "get_triangle_config(value, key)" > < / v - s h a p e >
< v - text v - for = "i in 4" : config = "get_q_text_config(action,i)" > < / v - t e x t >
< / v - g r o u p >
< v - image : config = "robot_config" > < / v - i m a g e >
< / v - g r o u p >
< / v - l a y e r > `
} )
// ----------------------------------------------------------------------------
// -------------------------------- Local -------------------------------------
// ----------------------------------------------------------------------------
Vue . component ( 'rl-local' , {
props : [ 'machine' , 'maze' , 'config' ] ,
data : function ( ) {
return {
robot _image : null ,
energy _image : null ,
}
} ,
watch : {
learning _rate : function ( new _val ) {
machine . lr = new _val ;
render _latex ( ) ;
created ( ) {
set _images ( this ) ;
} ,
discount _factor : function ( new _val ) {
machine . df = new _val ;
render _latex ( ) ;
computed : {
main _config : function ( ) {
return {
... this . config ,
offset : {
x : - ( this . config . width - this . base _size * 3 ) / 2 ,
y : - ( this . config . height - this . base _size * 3 ) / 2 ,
}
}
} ,
epsilon : function ( new _val ) {
machine . epsilon = new _val ;
map _config : function ( ) {
return {
x : - ( this . machine . state . x ) * this . base _size ,
y : - ( this . machine . state . y ) * this . base _size ,
offset : {
x : - this . base _size ,
y : - this . base _size ,
}
}
} )
function render _latex ( ) {
// (1-lr) * Q[state, action] + lr * (reward + gamma * np.max(Q[new_state, :])
katex . render ( ` Q(s,a) \\ leftarrow ${ ( 1 - machine . lr ) . toFixed ( 2 ) } Q(s,a)+ ${ machine . lr . toFixed ( 2 ) } (reward + ${ machine . df . toFixed ( 2 ) } \\ max_{a'}(Q(s_{new}, a')) ` , document . getElementById ( 'formula' ) , { displayMode : true , } ) ;
}
render _latex ( ) ;
} ,
robot _config : function ( ) {
return {
height : this . base _size ,
width : this . base _size ,
x : this . center ,
y : this . center ,
image : this . robot _image ,
offset : {
x : this . base _size / 2 ,
y : this . base _size / 2 ,
}
}
} ,
energy _config : function ( ) {
return {
height : this . base _size ,
width : this . base _size ,
offset : {
x : this . base _size / 2 ,
y : this . base _size / 2
} ,
image : this . energy _image ,
}
} ,
base _size : function ( ) {
return Math . min ( this . config . height / 3 , this . config . width / 3 ) ;
} ,
center : function ( ) {
return 3 * this . base _size / 2 ;
} ,
strokeW : function ( ) {
return this . base _size / 50 ;
} ,
} ,
methods : {
get _tile _type : function ( state ) {
var pos = this . machine . s2p ( state ) ;
if ( pos . y > maze . height ) {
return null ;
} else if ( pos . x > maze . width ) {
return null ;
} else {
return maze . map [ pos . y ] [ pos . x ] ;
}
} ,
in _plus : function ( pos1 , pos2 ) {
if ( Math . abs ( pos1 . x - pos2 . x ) + Math . abs ( pos1 . y - pos2 . y ) < 2 ) {
return true ;
}
return false ;
} ,
get _field _config : function ( state ) {
var pos = this . machine . s2p ( state ) ;
return {
x : this . base _size * pos . x + this . base _size / 2 ,
y : this . base _size * pos . y + this . base _size / 2 ,
}
} ,
get _tile _config : function ( i , t _type , local = true ) {
// var pos = this.s2p(i);
var over = { } ;
// not in plus
if ( local ) {
if ( ! this . in _plus ( this . machine . s2p ( i ) , {
x : Math . round ( this . machine . state . x ) ,
y : Math . round ( this . machine . state . y )
} ) ) {
over = {
opacity : 0 ,
fill : "#eee"
} ;
} else if ( i != this . machine . p2s ( Math . round ( this . machine . state . x ) , Math . round ( this . machine . state . y ) ) ) {
over = {
opacity : 1 ,
fill : "#eee"
} ;
}
}
const layout = {
width : this . base _size ,
height : this . base _size ,
stroke : '#ddd' ,
strokeWidth : this . strokeW ,
offset : {
x : this . base _size / 2 ,
y : this . base _size / 2 ,
}
} ;
switch ( t _type ) {
case tile . regular :
return {
... layout ,
fill : '#fff' ,
opacity : 1 ,
... over ,
}
case tile . end :
return {
... layout ,
fill : '#0eb500' ,
opacity : 1 ,
... over ,
}
case tile . start :
return {
... layout ,
fill : '#ff0008' ,
opacity : 1 ,
... over ,
}
case tile . dangerous :
return {
... layout ,
fill : '#FF7B17' ,
opacity : 1 ,
... over ,
}
case tile . wall :
return {
... layout ,
opacity : 1 ,
... over ,
fill : '#000000' ,
}
}
} ,
} ,
template :
` <v-layer ref="map_layer" :config="main_config">
< v - group ref = "map_group" : config = "map_config" >
< v - group v - for = "(t_type, idx) in maze.map.flat()" : config = "get_field_config(idx)" >
< v - rect : config = "get_tile_config(idx, t_type)" > < / v - r e c t >
< v - image : config = "energy_config" v - if = "t_type==8 && idx==Math.round(machine.state.x)+maze.width*Math.round(machine.state.y)" > < / v - i m a g e >
< / v - g r o u p >
< / v - g r o u p >
< v - image : config = "robot_config" > < / v - i m a g e >
< / v - l a y e r > `
} )
// ----------------------------------------------------------------------------
// ------------------------------ lightbox ------------------------------------
// ----------------------------------------------------------------------------
Vue . component ( 'light-box' , {
props : [ 'content' , 'options' , 'active' ] ,
// data: function () {
// return {
// active: false,
// }
// },
// methods: {
// close: function() {
// this.active = false;
// },
// open: function() {
// this.active = true;
// },
// },
template : `
< div class = "lightbox" v - bind : class = "{ active: active }" > { { content } }
< div class = "options" >
< button v - for = "(item, key) in options" v - on : click = "item" > { { key } } < / b u t t o n >
< / d i v >
< / d i v > `
} )
// ----------------------------------------------------------------------------
// -------------------------------- Main --------------------------------------
// ----------------------------------------------------------------------------
function make _machine _reactive ( th , machine ) {
var $this = th ;
// Score wrapper
var s = machine . score ;
$this . machine . score = s ;
Object . defineProperty ( machine , 'score' , {
get : function ( ) {
return this . _score
} ,
set : function ( ne ) {
this . _score = ne ;
$this . machine . score = ne
}
} ) ;
machine . score = s ;
// Score history wrapper
var s = machine . score _history ;
$this . machine . score _history = s ;
Object . defineProperty ( machine , 'score_history' , {
get : function ( ) {
return this . _score _history
} ,
set : function ( ne ) {
this . _score _history = ne ;
$this . machine . score _history = ne
}
} ) ;
machine . score _history = s ;
// State wrapper
var s = machine . state ;
$this . machine . state = $this . s2p ( s ) ;
Object . defineProperty ( machine , 'state' , {
get : function ( ) {
return this . _state
} ,
set : function ( ne ) {
this . _state = ne ;
$this . handleState ( this . _state ) ;
}
} ) ;
machine . state = s ;
$this . machine . s2p = $this . s2p ;
$this . machine . p2s = $this . p2s ;
window . addEventListener ( "episode" , ( ev ) => {
if ( ev . detail == "failed" ) {
$this . lightText = "Out of battery. The robot will be resetted." ;
} else if ( ev . detail == "success" ) {
$this . lightText = "You reached the goal. The robot will be resetted." ;
}
$this . lightOptions = {
"ok" : ( ) => { $this . lightpopup = false ; } ,
}
$this . lightpopup = true ;
} )
}
app = new Vue ( {
el : '#app' ,
components : {
VueSlider : window [ 'vue-slider-component' ] ,
} ,
data : {
state : 0 ,
maze : maze ,
machine : {
object : machine ,
q _table : machine . q _table ,
state : {
x : 0 ,
y : 0 ,
} ,
state _tween : new TimelineLite ( ) ,
learning _rate : machine . lr ,
discount _factor : machine . df ,
epsilon : machine . epsilon ,
score : machine . score ,
score _history : machine . score _history ,
s2p : null ,
p2s : null ,
} ,
width : 0 ,
height : 0 ,
state : null ,
components : [ ] ,
lightText : "" ,
lightOptions : "" ,
lightpopup : false ,
navigation : { } ,
onEnterState : function ( ) { } ,
onLeaveState : function ( ) { } ,
} ,
created ( ) {
// Resize handler
window . addEventListener ( 'resize' , this . handleResize )
this . handleResize ( ) ;
make _machine _reactive ( this , machine ) ;
this . state = "init" ;
} ,
destroyed ( ) {
window . removeEventListener ( 'resize' , this . handleResize )
} ,
computed : {
stage _config : function ( ) {
return {
width : this . width ,
height : this . height ,
}
} ,
map _config : function ( ) {
return {
x : this . width * 0.25 ,
y : this . height * 0.1 ,
width : this . width * 0.5 ,
height : this . height * 0.8 ,
}
} ,
slider _config : function ( ) {
return {
min : 0 ,
max : 1 ,
duration : 0 ,
interval : 0.01 ,
tooltip : 'none'
}
} ,
datacollection : function ( ) {
return {
labels : Array . from ( Array ( this . machine . score _history . length ) . keys ( ) ) ,
datasets : [ {
label : 'Data One' ,
backgroundColor : 'rgb(0,0,0,0)' ,
data : this . machine . score _history , //.simpleSMA(Math.round(50)),
fill : false ,
borderColor : 'rgb(255, 159, 64)' ,
pointRadius : 1 ,
} ,
// {
// label: 'Data One',
// backgroundColor: 'rgb(0,0,0,0)',
// data: this.score_history.max(),
// fill: false,
// borderColor: 'rgb(64, 159, 255)',
// pointRadius: 1,
// },
]
}
} ,
plot _options : function ( ) {
var $this = this ;
return {
responsive : true ,
maintainAspectRatio : false ,
scales : {
xAxes : [ {
// type: 'linear',
ticks : {
maxTicksLimit : 8 ,
maxRotation : 0 ,
}
} ]
} ,
legend : {
display : false
}
}
} ,
} ,
methods : {
s2p : function ( state ) {
return {
x : ( state % this . maze . width ) ,
y : Math . floor ( state / this . maze . width ) ,
}
} ,
p2s : function ( x , y ) {
return x + y * this . maze . width ;
} ,
handleState : function ( s ) {
if ( ! this . machine . object . running ) {
this . machine . state _tween . to ( this . machine . state , 0.2 , {
x : this . s2p ( s ) . x ,
y : this . s2p ( s ) . y
} ) ;
} else {
this . machine . state = this . s2p ( s ) ;
}
} ,
handleResize : function ( ) {
this . width = window . innerWidth ;
this . height = window . innerHeight ;
} ,
isActive : function ( what ) {
return this . components . indexOf ( what ) >= 0 ;
} ,
changeState : function ( state ) {
this . components = [ ] ;
this . lightText = "" ;
this . lightOptions = "" ;
this . lightpopup = false ;
this . navigation = { } ;
this . onEnterState = function ( ) { } ;
this . onLeaveState = function ( ) { } ;
this . state = state ;
}
} ,
watch : {
'machine.learning_rate' : function ( new _val ) {
machine . lr = new _val ;
render _latex ( ) ;
} ,
'machine.discount_factor' : function ( new _val ) {
machine . df = new _val ;
render _latex ( ) ;
} ,
'machine.epsilon' : function ( new _val ) {
machine . epsilon = new _val ;
} ,
state : function ( state ) {
this . onLeaveState ( ) ;
Object . assign ( this , StateMgr [ state ] ) ;
this . onEnterState ( ) ;
} ,
}
} )
function render _latex ( ) {
// (1-lr) * Q[state, action] + lr * (reward + gamma * np.max(Q[new_state, :])
katex . render ( ` Q(s,a) \\ leftarrow ${ ( 1 - machine . lr ) . toFixed ( 2 ) } Q(s,a)+ ${ machine . lr . toFixed ( 2 ) } (reward + ${ machine . df . toFixed ( 2 ) } \\ max_{a'}(Q(s_{new}, a')) ` , document . getElementById ( 'formula' ) , { displayMode : true , } ) ;
}
render _latex ( ) ;
// ----------------------------------------------------------------------------
// ------------------------------ StateMgr ------------------------------------
// ----------------------------------------------------------------------------
var StateMgr = {
init : {
lightText : ` Reinforcement learning (RL) is an area of machine learning concerned with how software agents ought to take actions in an environment so as to maximize some notion of cumulative reward. Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning. (wikipedia)
This exhibit explains how a robot can learn to navigate through a maze in order to reach its destination , before running out of power . At first the robot knows nothing , and learns from each new action ( movement ) and state ( location reached ) . Slowly it starts to develop an understanding of the maze that will allow it to reach the charging station before it runs out of power . Eventually , it should learn to avoid any detour and reach the charging station in the optimal number of steps . ` ,
lightOptions : {
"next" : ( ) => app . changeState ( "local" ) ,
} ,
onEnterState : function ( ) {
this . lightpopup = true ;
} ,
onLeaveState : function ( ) {
this . lightpopup = false ;
}
} ,
local : {
components : [ "local" , "navi" , "score" ] ,
navigation : {
"reset robot" : ( ) => machine . reset _machine ( ) ,
"continue" : ( ) => app . changeState ( "global" ) ,
} ,
lightText : "But there is a problem! The robot cannot see the whole maze, it only knows where it is and in which direction it can move. Can you reach the charging station in those conditions? Use the arrows to move" ,
lightOptions : {
"next" : ( ) => { app . lightpopup = false ; } ,
} ,
onEnterState : function ( ) {
this . lightpopup = true ;
} ,
onLeaveState : function ( ) {
this . lightpopup = false ;
}
} ,
global : {
components : [ "global" , "sliders" , "plot" , "navi" , "score" ] ,
navigation : {
"run 1 episode!" : ( ) => machine . run ( 1 ) ,
"run 100 episodes!" : ( ) => machine . run ( 100 ) ,
"auto step!" : ( ) => machine . auto _step ( ) ,
"greedy step!" : ( ) => machine . greedy _step ( ) ,
"reset machine" : ( ) => machine . reset _machine ( ) ,
} ,
lightText : ` As a human, you keep track of where you are and how you got there without thinking, which helps you think about what actions you should take next to reach your destination. And you can also just look around! How can then the robot 'think' of the maze, to know which action is the best at every moment? And how can it learn that? It must somehow keep track of where it is, and remember how good or bad was each action at each place in the maze, try new things, and update it's "mental image" of what was a good decision and what not.
Reinforcement Learning uses the concept of a "Q-function" , which keeps track of how "good" it expects it to be to take a specific action 'a' from a specific location 's' . This is written as Q ( s , a ) . It also uses a "policy" , which determines the best action to take in a given state , and is written as π ( s ) . The robot must learn those functions while it navigates the maze . With each step , the functions are modified by a little bit , until eventually they give it the best strategy to solve the maze . ` ,
lightOptions : {
"continue" : ( ) => { app . lightpopup = false ; } ,
} ,
onEnterState : function ( ) {
this . lightpopup = true ;
} ,
}
} ;
// ----------------------------------------------------------------------------
// ------------------------------- Dummy --------------------------------------
// ----------------------------------------------------------------------------
// Vue.component('dummy', {
// props: ['config'],
// data: function () {
// return {
// robot_image: null,
// }
// },
// created() {
//
// },
// mounted() {
//
// },
// computed: {
// fun: function() {
// return
// },
// },
// methods: {
// fun: function(arg) {
// },
// },
// template: ``
// })